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Abstract 
Damping Ring performance depends on the ability to store the design beam current, and 
extract the beam with the specified low transverse emittance.  Given the high bunch 
charge and moderate energy, a variety of collective effects could play a significant role, 
in either limiting the bunch current, or increasing the emittance.  Here, we estimate the 
consequences of various effects, based on current theories and understanding. 

1 Introduction 
Collective effects that have the potential to disrupt beam quality or stability in the NLC 
Main Damping Rings include: 
 

• long-range (i.e. bunch-to-bunch) wake fields, from RF cavity higher order modes 
or the resistance of the vacuum chamber walls; 

• short-range (i.e. single bunch) wake fields, from components such as BPMs, 
bellows masks etc. 

• intra-beam scattering; 
• long and short-range wake fields from electron cloud (positron ring); 
• wake fields from ions (electron ring); 
• the space-charge impedance of the bunch itself. 

 
Some of these effects, such as the wake fields from vacuum chamber components, are 
relatively well understood, although difficult to predict with confidence in particular 
situations.  In other cases, notably for the intra-beam scattering and electron cloud, the 
theory is less well developed, and the experimental data surrounded by significant 
uncertainty.  Since many of the effects are related (e.g. by affecting and being affected by 
the bunch volume), we review here the impact each is likely to have on operation of the 
MDRs. 
 
Some parameters for the present MDR design1 are given in Table 1. 
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Table 1 

NLC MDR parameters. 

Energy E  1.98 GeV 
Circumference C  299.792 m 

Tunes xν , yν , sν  27.26, 11.14, 0.0035 

Mean beta functions xβ , yβ  3.6 m, 7.1 m 

Momentum compaction α  2.95×10-4 

Natural energy spread δσ  0.0909 % 

Bunch length zσ  3.60 mm 
RF acceptance (at 1.07 MV)  1.5 % 
Particles per bunch bN  7.5×109 

Bunch separation csb  1.4 ns 
Fill pattern  3 trains of 192 bunches 
RF frequency RFf  714 MHz 

Energy loss per turn 0U  792 keV 

Radiation damping times xτ , yτ , ετ  4.76 ms, 5.00 ms, 2.57 ms 

Equilibrium normalized emittance xγε , yγε  2.22 µm, 0.0131 µm 

Mean horizontal H  function xH  1.91 mm 

Vacuum chamber material  Aluminum 
Beam pipe radius: standard, wiggler b  0.016 mm, 0.008 mm 

2 Coupled-Bunch Instabilities 
Long-range wake fields driving coupled-bunch instabilities arise from RF cavity and 
vacuum chamber impedances, and also from electron cloud (positron ring) or ions 
(electron ring).  In this section, we consider the impedance sources; electron cloud and 
ion effects are discussed in sections 8 and 9 respectively. 
 
For an arbitrary fill function, calculation of the longitudinal and transverse coupled-bunch 
growth rates can be extremely cumbersome, since modulation coupling and Landau 
damping have to be taken into account.  In our case, where we are dealing with three 
trains of equally charged, uniformly separated bunches, we can derive useful information 
about the upper boundaries of the growth rates, by studying uniform fills2. 

2.1 Longitudinal growth rates 
Given a uniform fill, the growth rate for the p-th longitudinal coupled-bunch mode is: 
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0f  is the revolution frequency.  The longitudinal growth rates for the MDRs are shown in 

Figure 1.  The black dots are obtained by analyzing a uniform fill with the same current 
per bunch as the actual three-train fill, and thus with a higher current.  In the case of a 
single gap in the fill, it can be demonstrated analytically3 that these are indeed the upper 
limits of the growth rates.  The additional two gaps present in the MDR cause an 
additional coupling between modes whose indices differ by three.  An analysis of the 
power spectrum of the three-train fill shows that this is only a small effect.  The filled 
areas are obtained from an analysis of a uniform fill with the same total current, and 
therefore less current per bunch, as the actual fill.  This gives an estimate of the lower 
limit for the growth rates, even though modulation coupling can couple stable modes to 
unstable ones, resulting in a lower growth rate for some modes.  The only mode above 
threshold is caused by the accelerating mode detuning (~114 kHz). 
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Figure 1 

Longitudinal growth rates in the MDRs.  The dashed line shows the radiation damping. 

2.2 Transverse growth rates 
At present, there are no separate data available for horizontal and vertical transverse 
higher-order modes (which would require full 3-D simulations of the RF cavities4, if not 
measurements on a prototype), so the only difference between horizontal and vertical 
growth rates arises from the difference in the betatron tunes. 
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The transverse growth rates for a uniform fill are: 
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The modal harmonics at which the effective transverse impedance is to be evaluated are 
given by: 

( ) ( ) 0, fpnfnf yxRFp ν++=  
 

and the effective transverse impedance for the p-th mode is: 
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In this case, positive frequency harmonics are damping.  The resistive wall transverse 
impedance for an aluminum vacuum chamber is given by: 
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We can calculate upper and lower limits for the growth rates for the three-train fill, using 
the same method as in the longitudinal case. 
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Figure 2a 

Horizontal coupled-bunch growth rates in the MDRs, including resistive wall impedance.  The 
dashed line gives the radiation damping. 

 
The resistive wall impedance dominates the growth rates, and there would be little 
advantage of developing the cavity design to damp further the higher order modes.  The 
range of modes with growth rates faster than the radiation damping rate indicates that a 
feedback system will be required, with bandwidth of the order 350 MHz, and sufficient 
gain to damp modes with growth times of the order 100 µs. 
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Figure 2b 

Vertical coupled-bunch growth rates in the MDRs, including resistive wall 
impedance.  The dashed line gives the radiation damping. 

3 Short-Range Wake Fields 
An impedance model for an earlier version of the MDR was developed by Ng5.  It 
appears that the present design, in terms of circumference, vacuum chamber dimensions, 
numbers of BPMs and other components, resembles this previous version sufficiently 
closely for the model to retain some validity.  In particular, the large contribution from 
the resistive wall may be compared with the wake field calculated analytically, and is 
found to match closely.  The total wake potential, including contributions from the RF 
cavities, resistive wall, BPMs, bellows masks, antechamber slots, and injection/extraction 
kickers, is shown in Figure 3. 
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Figure 3 

Short range wake potential, drawn from reference 5.  The broken line 
shows the bunch shape used to generate the wake potential in the 
MAFIA simulation. 
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We consider here two consequences of the short-range wake field; potential well 
distortion, and the microwave instability threshold. 

3.1 Potential well distortion 
The short-range wake field leads to a modification of the longitudinally focusing 
potential seen by particles in the beam; this is essentially a stationary mode driven by the 
broad band impedance of the ring.  The equilibrium longitudinal distribution of particles 
in the bunch may be found by solving the Haissinski equation: 
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where ρ  is the line density of charge in the bunch, sω  the synchrotron frequency, γ  the 

relativistic factor, and 0W ′  the longitudinal wake function (other parameters are defined in 

Table 1).  The wake potential is generated numerically by modeling in MAFIA, using a 
bunch of non-zero length; the potential found in this way has a leading tail that is not 
physical.  This may be dealt with in either of two ways: by replacing the tail with a delta 
function of the same area at 0=z  (the resistive approximation), or by reflecting the 
leading tail in the plane 0=z  (the capacitative approximation).  If a sufficiently short 
bunch has been used to generate the wake potential, both approximations should give the 
same result.  The solution to the Haissinski equation for the wake potential of Figure 3 is 
shown in Figure 4. 
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Figure 4 

Effect of potential well distortion on the longitudinal bunch 
distribution.  The broken line shows the zero-current limit; the 
two solid lines show the bunch distribution using the resistive 
and capacitative approximations. 

 The bunch length is increased by approximately 4.5% as a result of the broad-band 
impedance.  This is unlikely to have any significant effect on other collective effects, 
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such as intra-beam scattering or Touschek lifetime.  The energy loss resulting from the 
trapped modes is roughly 10 keV, and the synchronous phase is shifted by a 
corresponding amount.  

3.2 Microwave instability threshold 
It is possible to obtain an estimate of the microwave instability threshold using the 
Boussard criterion.  One considers beam oscillations driven by the broad-band 
impedance; the allowed frequencies of oscillation must satisfy a condition, expressed as a 
dispersion relation, arising from Landau damping.  The Boussard criterion gives an 
approximation to the region of stability in the complex plane representing the impedance: 
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where ( )ω//Z  is the longitudinal impedance, E  is the beam energy, and Î  is the peak 

current.  From the bunch shape and wake potential shown in Figure 3, we can fit an 
impedance to the induced voltage; the result is shown in Figure 5. 
 
7KH�PDJQLWXGH�RI�WKH�LPSHGDQFH�LV����� ���:H�XVH� zc σ  for the characteristic frequency, 

so that zcn σω0= , and Ω≈ 025.0// nZ .  The Boussard criterion then gives for the 

microwave threshold: 

120ˆ ≤I A 
 

Since the nominal peak current is 40 A, there appears to be a margin of a factor of three 
between the operating point and the threshold. 
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Figure 5 

The broken line shows the induced voltage from the bunch shape 
and wake potential of Figure 3.  The broken line shows a fit to this 
induced voltage, using a rHVLVWLYH�LPSHGDQFH�RI����� ��ZLWK�D�VPDOO�

inductive component. 

 
The Boussard criterion gives a somewhat rough estimate of the microwave threshold.  A 
more rigorous approach involves solving the linearized Vlasov equation, to find the 
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longitudinal modes.  It is also possible to estimate the threshold through turn-by-turn 
tracking, using a large number of macroparticles.  Estimates for the damping ring design 
used in the NLC ZDR6 found qualitative agreement between the different approaches, 
with the Boussard criterion possibly giving an optimistic estimate of the operating 
margin. 

4 Touschek Lifetime 
Touschek scattering is the dominant lifetime limitation in low emittance electron storage 
rings.  Collisions between particles in a given bunch lead to a transfer of transverse 
momentum to the longitudinal.  Since the transverse momentum of a particle is typically 
very much larger than longitudinal (in the rest frame of the bunch), such collisions can 
lead to particles being scattered outside the momentum acceptance of the ring, defined 
either by the RF voltage, transverse dynamics, or physical aperture.  The rate at which 
particles are lost clearly depends on the collision rate, and hence on the bunch volume, 
and on the momentum acceptance.  Third generation light sources typically increase the 
bunch volume by transverse emittance coupling or higher harmonic cavities, to achieve 
Touschek lifetimes of several hours.  The aim in a damping ring is to reduce the bunch 
volume (certainly in the transverse dimensions) as much as possible.  Given the moderate 
energy of the beam in the NLC MDR, the Touschek lifetime may be expected to be of the 
order of minutes rather than hours.  Since in standard operation, each bunch is stored for 
only a few milliseconds, Touschek scattering is unlikely to be an operational limitation; 
however, a reasonable lifetime is desirable for commissioning and regular tuning of the 
ring. 
 
We can estimate the Touschek lifetime in the MDR using the standard formula7: 
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and the parameter ε  is given by ( )21
xσγλε ′=− , with xσ ′  the horizontal beam divergence.  

The results of the calculation are shown in Figure 6, where we see the lifetime of the 
beam increasing as roughly the third power of the momentum acceptance ( ( )εD  is a 
rather flat function of the momentum acceptance in this regime).  The RF power is 
specified to give a momentum acceptance of 1.5%, which would imply a lifetime of 
around 4 minutes.  The dynamic momentum acceptance of the lattice may be somewhat 
less than this, although further optimization of the dynamics could improve the situation.  
We note that the lifetime scales as the square root of the vertical emittance, and is 
inversely proportional to the bunch charge.  Increasing the emittance ratio to about 5% 
would give a lifetime of the order 10 minutes. 
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Figure 6 

Touschek lifetime in the MDR as a function of momentum 
acceptance of the ring, with the nominal 0.013 µm rad normalized 
vertical emittance. 

The beam loss from Touschek scattering will lead to some radiation load on the ring.  
However, with a lifetime of 200 s, the expected power load from this source is less than 
10 W, which should not be a significant problem. 

5 Intra-beam Scattering 
Collisions between particles in a bunch may lead to a small enough transfer of 
momentum, that the particles involved are not lost from the beam.  In this case, there is 
an increase in the energy spread of the bunch, which couples back through the dispersion 
into the transverse planes.  The resulting emittance increase may be estimated using one 
of the theories of intra-beam scattering (IBS).  Here, we apply formulae8 giving 
approximations to the more rigorous treatment of Bjorken and Mtingwa9; the results of 
the different approaches are generally in reasonable agreement10.  The IBS growth rates 
are defined as: 
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where the lattice function �H  is defined in terms of the dispersion: 
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and similarly for the vertical plane.  Brackets  indicate averages over the full lattice.   
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Assuming that the vertical dispersion is randomly distributed around the ring, then the 
vertical emittance generated by the vertical dispersion may be approximated by: 

22 δε σε �� HJ≈  (2) 

where εJ  is the longitudinal damping partition number. 

 
There exists an analogy between emittance growth from IBS and emittance growth from 
quantum radiation.  In both cases, change in the momentum deviation of a particle in a 
dispersive region of the lattice results in a change in betatron oscillation amplitude.  The 
growth rate of the emittance in either process follows from a consideration of the 
statistics of the transverse excitation.  The difference between the two processes, is that 
IBS occurs throughout the lattice, whereas quantum excitation takes place only where 
synchrotron radiation is emitted, i.e. in magnetic fields.  There follows a relationship 
between the relative IBS emittance growth in the vertical and horizontal planes, which 
may be expressed as: 
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where 3I  and 5I  are the third and fifth synchrotron radiation integrals.  The range on the 

relative IBS emittance growth is a consequence of the different mechanisms by which 
vertical emittance may be generated: in the case the vertical emittance is dominated by 
betatron coupling, the relative growth will be close to 1; in the case it is dominated by 
vertical dispersion, it will be close to the limit given by the radiation integrals and the 
average of �H .  The low vertical dispersion limit may easily be understood by 

inspection of equations (2) and (3).  If the vertical dispersion throughout the lattice is zero 

then 0=�H , and the vertical emittance and IBS vertical growth rate are both expected 

to be zero.  Any vertical emittance comes from betatron coupling from the horizontal 
plane, and the relative vertical emittance growth from IBS must then equal the relative 
horizontal emittance growth. 
 
For a lattice where all bends are the same strength equation (3) reduces to11: 
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For the NLC MDR, this is a poor approximation, since the wiggler makes a dominant 
contribution to the radiation energy loss. 
 
Solutions to equations (1) for the case of 0.1% betatron coupling are shown in Figure 7.  
We note that the horizontal emittance passes through a minimum before rising to an 
equilibrium value; this is characteristic of IBS, and has been observed at the ATF12.  The 
behavior is easily explained, since the scattering rate depends on the bunch volume, and 
the horizontal IBS emittance growth only becomes significant once the vertical emittance 
has damped below a certain value. 
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(b) Vertical emittance 
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Figure 7 

Damping without IBS (solid lines) and with IBS (broken lines), in (a) the horizontal (b) the vertical 
planes, and (c) the energy spread.  The initial horizontal and vertical emittances are 150 µm-rad, and 
the initial energy spread is 1%.  The beam is extracted after 25 ms.  For the IBS calculations, a 
betatron coupling of 0.1% was assumed, with an equilibrium vertical emittance of 0.013 µm-rad. 

 
The results of some calculations are shown in Table 2.  We note that for the MDR lattice, 

2.035 ≈xII H ; the relative emittance growth is then consistent with the condition 

given in equation (4). 
 
IBS theory has not been rigorously tested in the regime in which the MDR is designed to 
operate, although studies are continuing at the ATF and the ALS13.  Some of the results 
from the ATF suggest that the Coulomb log factor (the logarithm of the ratio of 
maximum to minimum impact parameters in the collision between any two particles in 
the bunch) may be as much as a factor of two larger than expected.  The IBS growth rates 
are directly proportional to the Coulomb log (see the logarithmic factor in equation (1)), 
so uncertainty in this factor has a large impact on the size of the predicted effect.  Even 
with the conventional theory, the extracted emittances have values larger than the 
specifications; we suggest that research in this area should be continued. 
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Table 2 

Effects of IBS on horizontal and vertical emittance. 

No IBS With IBS 
Time 

Betatron 
Coupling xγε /µm yγε /µm xγε /µm yγε /µm 

Relative 
Emittance 
Growth 

Equilibrium 0 2.20 0.0131 3.62 0.0147 0.2 
Equilibrium 0.001 2.20 0.0131 3.55 0.0160 0.4 
Equilibrium 0.006 2.20 0.0131 3.37 0.0206 1.0 
Extraction 0.001 2.20 0.0200 3.14 0.0219 - 

 
To compensate for the effects of IBS, several approaches are possible.  The IBS growth 
rates decrease with increasing energy; however, increasing the energy with the present 
lattice design leads to an increase in the extracted emittance, because of the increase in 
the natural emittance of the lattice.  A new lattice would therefore be needed to benefit 
from an energy increase.  An alternative approach might be to use higher harmonic 
cavities to increase the bunch length, thus reducing the scattering rate by increasing the 
bunch volume.  The results of some calculations of extracted emittance as a function of 
bunch length, are shown in Figure 8.  It appears that a bunch lengthening of the order of 
40%, together with some modest reduction in the equilibrium vertical emittance, would 
be sufficient to reduce the extracted emittances to within the specified limits. 
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Figure 8 

Extracted emittance as a function of bunch length, with IBS, using the conventional value for the 
Coulomb log.  The different lines correspond to equilibrium vertical emittances between 0.010 µm 
rad (upper line for the horizontal plot, and lower line for the vertical) and 0.013 µm rad. 

The main problem with using higher harmonic cavities is that the beam loading leads to 
phase transients in the bunch trains, that can be strongly nonlinear; the likely effects of 
harmonic cavities in the MDR are currently being investigated.  We present some initial 
results in the next section. 
 
The variation of the horizontal emittance during the damping cycle shown in Figure 7 
raises the possibility of overcoming the limitation from IBS by lowering the energy by a 
small amount.  The idea is to increase the damping time, so that extraction takes place 
closer to the minimum of the horizontal emittance.  We rely on there being some margin 
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between the equilibrium horizontal emittance without IBS (2.2 µm rad), and the specified 
extracted emittance (3.0 µm rad).  The drawback to this approach, is of course that there 
has to be a significant reduction in the equilibrium vertical emittance to compensate the 
lower damping rate. 
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Figure 9 

Horizontal extracted emittance and required (zero current) equilibrium vertical emittance, as 
functions of change in the beam energy.  The extracted vertical emittance is fixed at 0.02 µm rad. 

In Figure 9, we show the extracted horizontal emittance as a function of the change in 
energy, and the equilibrium vertical emittance required to allow 0.02 µm rad extracted 
vertical emittance.  A reduction in energy by about 3% will produce the specified 
extracted horizontal emittance, but the equilibrium vertical emittance needs to be reduced 
by a factor of 3.  There would clearly be a significant impact on the alignment tolerances, 
but we have not yet investigated this. 

6 Phase Transients from Beam Loading 
Gaps between the bunch trains in a storage ring lead to a variation in the synchronous 
phase along the bunch trains.  This effect has been studied using a tracking code based on 
difference equations used to model the longitudinal motion of each individual bunch14: 
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where δ  is the momentum deviation, φ  the beam phase with respect to the synchronous 

phase, 0T  is the revolution period, gV  the generator voltage, bV  the beam induced 

voltage, and h  the harmonic number.  For these simulations, we assumed that there was 
no limitation in the available RF power (i.e. the compensation for beam loading was 
unlimited). 
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Figure 10 

Longitudinal phase of a subset of bunches, tracked over one injection/extraction cycle. 

Figure 6 shows the evolution in longitudinal phase of a small number of bunches, tracked 
over a number of turns corresponding to a single injection/extraction cycle.  The initial 
phase and energy deviation are chosen randomly.  Because of the radiation damping, the 
equilibrium is reached after about 5000 turns; this is shown in Figure 11.  The 
equilibrium peak-to-peak phase variation is slightly less than 100 mrad, which 
corresponds to 6.8 mm in the ring. 
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Equilibrium distribution of phases along an MDR fill.  The positive slopes occur at the gaps, 
represented in the simulation by bunches with zero charge. 
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As a further test, starting from the equilibrium distribution, the phases and energy 
deviations in a single train were randomized, to simulate the injection of a new train.  The 
behavior of the new and older trains does not differ significantly from that shown in 
Figure 10 and Figure 11, except over the first few hundred turns.  Further work is 
underway to calculate the influence of higher order modes in the RF cavities, of 
saturation in the RF generator, and of unequal bunch charges within a train. 

7 Space-Charge 
Focusing effects from the space-charge force of the bunch leads to an incoherent tune 
shift, which may not be entirely negligible for highly focused beams at moderate energy.  
Using the standard formula7: 
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we find that the incoherent vertical tune shift is 0.05 for the equilibrium beam, and 0.04 
for the beam at extraction.  The horizontal tune shift is much smaller, because of the 
larger horizontal size of the beam. 
 

 
Figure 12 

Working point of the MDR lattice.  Resonance lines up to fifth order are shown.  The 
tune curve shows variation of the working point with ±2% momentum deviation; space-
charge effects are expected to lead to an incoherent vertical tune shift of 0.05. 

In principle, the incoherent tune shift is large enough that particles in the beam could 
cross some higher order resonances (see Figure 12), but it is not immediately clear what 
effect these resonances would have on the dynamics.  We suggest that tracking studies be 
performed, to investigate further the space-charge effects. 
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8 Electron Cloud 
Electrons generated by a variety of processes may be trapped in the potential well of the 
beam in a proton or positron storage ring.  The dynamical response of the cloud under 
forces from the beam mediates an interaction between particles in a bunch, or between 
separate bunches.  Under appropriate conditions, the electron cloud can drive instabilities 
in the beam; instabilities consistent with the expected models have been observed in a 
number of storage rings15.  The problem of estimating the impact of the electron cloud 
instability on a storage ring can be considered in two parts: first, the electron cloud 
density and distribution must be determined, and second, the behavior and influence of 
the wake forces resulting from the electron cloud must be found.  Both problems are 
complex, and detailed simulations and analytical models have been developed in attempts 
to understand the processes involved. 
 
Studies for the NLC MDR are on-going, but we present here some brief comments on the 
likely impact of the performance of the ring, based on a simple model.  The essential 
features of the model are as follows: 

• The number of electrons per unit length in the vacuum chamber is assumed equal 
to the number of positrons per unit length in the beam (the “neutralization 
condition”). 

• During the passage of a single bunch, the electrons are assumed to be 
concentrated within the bunch, and to oscillate in the field of the bunch.  The 
wake field is then represented by a simple broad-band resonator model. 

• Over a longer range, the cloud is assumed to oscillate in a mean beam current, and 
the wake field is again represented by a broad-band resonator, though with 
different parameters than for the single bunch case. 

 
The broad-band resonator model has been used for the single bunch by Ohmi et al16 and 
by Heifets17; and the resonator model for the coupled-bunch case has been considered by 
Heifets18.  We note that the real dynamics of the beam and the cloud are significantly 
more complex than suggested by this model. 
 
Our analysis considers only field-free regions of the lattice.  The presence of even weak 
magnetic fields can make a considerable difference to the complicated dynamics of the 
electron cloud, and use of solenoid windings around the beam pipe has been found to be 
an effective method of limiting the effects of the electron cloud. 

8.1 Single bunch instability 
The beam and cloud are assumed to have transverse gaussian distributions with the same 
rms sizes.  Consideration of the forces acting between particles in the cloud and particles 
in the bunch leads to the expression for the transverse wake function16: 
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bω  and cω  are, respectively, the oscillation frequency of positrons in the field of the 

electron cloud, and the oscillation frequency of electrons in the field of the bunch: 
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bλ  and cλ  are the line density of particles in the bunch and in the cloud.  Equation (5) 

does not include any damping of the wake.  Since the cloud is a dynamical system 
responding to a nonlinear force, the oscillations will rapidly decohere.  The quality factor 
Q  may be estimated analytically17 or fitted from simulation.  One generally finds that Q  
is of order 5, but the results of the single bunch instability estimate are insensitive to the 
exact value. 
 
Including damping of the electron cloud oscillations, the wake function takes the form: 
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and the corresponding wake potential has the usual form: 
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The effect of such an impedance on a bunch may be approached in a number of different 
ways, of which three are: 
 

1. One solves the linearized Vlasov equation for a given longitudinal phase-space 
distribution, calculating the frequencies of different synchrotron sidebands to the 
betatron frequency, and neglecting coupling between the synchrotron modes.  
Instability may be assumed to occur when the frequency shifts are of the order of 
the synchrotron frequency. 

2. The linearized Vlasov equation is again solved, but mode coupling is included.  
The growth rates of unstable modes are calculated directly.  Only very simple 
(and rather unrealistic) phase space distributions may be treated by this method. 

3. If the resonator period is short compared to the bunch length it may be more 
appropriate to consider an unbunched or coasting-beam model.  An analogous 
case is the situation where the growth rate of the instability is large compared to 
the synchrotron frequency, where the standard head-tail theory does not apply.  A 
“post head-tail” theory has been developed to deal with this situation. 

 
It is not entirely clear that any of the above approaches is entirely appropriate to the 
electron cloud instability, and we do not expect to determine accurately thresholds or 
growth rates.  We may hope, however, to develop some idea of where the proposed 
parameters of the damping rings lie in relation to the instability regime. 
 
The first approach given above is the simplest19.  We define an effective impedance for 
the l-th mode: 
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where 0ω , βω , sω  are the revolution, betatron and synchrotron frequencies respectively, 

and 
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where ξ  is the chromaticity.  For a gaussian beam: 
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The tune of the l-th mode is then given by: 
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Using the NLC MDR parameters, assuming the cloud density given by the neutralization 
condition and zero chromaticity, we find that ( ) 3.10i 1 ≈=lZ eff �0 �P��DQG�WKH�WXQH�VKLIW�

for the 0=l  mode is approximately –1.8; this suggests that the operating parameters are 
well above the instability threshold. 
 
Taking the second approach suggested above, we solve the linearized Vlasov equation for 
a bunch with gaussian distribution in transverse and longitudinal phase space, again 
looking for the frequencies of the synchrotron sidebands to the transverse dipole mode, 
but now including the possibility of mode coupling20.  In this, we follow the procedure of 
Ohmi et al16.  Since mode coupling is allowed, the frequencies we find may be complex; 
the occurrence of complex frequencies indicates the onset of the strong head-tail 
instability.  We retain only the lowest radial mode in the longitudinal phase space, and the 
tunes of the different modes are then given by the eigenvalues of the matrix M , which 
has components: 
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Given the lattice parameters, and bunch charge and dimensions, it is now possible to find 
the eigenvalues of M .   
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Table 3 

Quantities describing the short-range electron cloud wake. 

Quantity Symbol Value 

Electron cloud density 0n  2.2×1013 m-3 

Electron frequency cω  1.0×1012 s-1 

Positron frequency bω  2.8×106 s-1 

Wake function amplitude QcRs  1.5×108 m-2 

Quality factor Q  5 
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Figure 13 

Synchrotron sideband tune as a function of the electron cloud wake 
function amplitude. 

 

0.5 1 1.5 2

Rs� � � � � �
Q
� � Rs� � � � � �

Q
	
nominal

0.002

0.004

0.006

0.008

0.01

0.012

growth rate
� 


s

 
Figure 14 

Growth rates of the strong head-tail modes associated with mode coupling.  
The shortest growth time is 3.6 ms. 

The values of the significant quantities are shown in Table 3.  We have again used the 
electron cloud density given by the neutralization condition with the standard beam-pipe 
radius of 0.016 m.  (In the wiggler section the density may be higher because of the 
narrower pipe of 0.008 m radius, but in the wiggler the magnetic fields could play a 
significant role.)  We plot the solution for the first four synchrotron sidebands as a 
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function of QRs  in Figure 13.  Note that to produce the plot, we vary the amplitude of 

the wake function, while leaving all other parameters unchanged; in other words, the 
nominal impedance is given by (6), but we investigate what happens if the impedance is 
larger or smaller than expected.  Instability is associated with the tunes of two sidebands 
merging, which happens on either side of the nominal impedance in the case under 
consideration.  The associated growth rates are shown in Figure 14. 
 
We note that the tune shift of the zero mode is consistent with that found in our first 
approach to the problem, where we neglected mode coupling.  The somewhat unusual 
behavior of the modes, in that there are very narrow ranges of the impedance where the 
instability occurs, is a consequence of the fact that the cloud frequency cω  is larger than 

the characteristic bunch frequency zc σ  by a factor of 12.  We therefore turn to the third 
approach to estimating the instability threshold, based on the coasting beam model.  In 
this model, the threshold for the instability is given by21: 
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Here, qω  is the value of ξω  at which the real part of ( )01
effZ  takes its maximum value, 

and ( )01
effZ  is to be evaluated as though the chromaticity were such that qωωξ = .  Note 

that this is not entirely a self-consistent treatment, since we treat the impedance as though 
it were independent of the bunch charge, which is not the case for the electron cloud.  
Since we are only interested in whether we are above or below threshold, however, this 
approach is good enough. 
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Figure 15 

Real part of the zero mode effective impedance as a function of chromaticity. 

( )[ ]0Re 1
effZ  as a function of ξω  is shown in Figure 15; the peak is at 1210≈ξω s-1, and we 

find that the threshold bunch charge is just under 1010 particles.  Thus, all three possible 
approaches are consistent in indicating that the MDR with the current parameter set is 
close to, or above, the instability threshold. 
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The focusing force of the electron cloud also generates an incoherent tune shift22.  A 
rough estimate for this tune shift is given by: 

y
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ων

2
0

2

=∆  (8) 

where bK  is a cloud bunching factor, allowing for an increased density of the cloud in 

the positron bunch, beyond that given by distributing the cloud with the same rms widths 
as the positron bunch.  Simulations suggested that this factor could be as much as 15, 
which would give an incoherent tune shift about 0.3.  This is a significant amount, and is 
likely to have a detrimental effect on the dynamics, though it is difficult to quantify the 
effect without further work. 

8.2 Coupled bunch instability 
After a bunch passage, electrons close to the bunch are left with sufficient energy that 
they reach the wall of the vacuum chamber before the arrival of the next bunch.  
Electrons further away are kicked by the bunch, but do not perform a complete 
oscillation, and do not reach the wall before the arrival of the next bunch.  Electrons in 
this region may be thought of as oscillating in the mean field of the beam; this is likely to 
be a reasonable model, if the period of such oscillations is large compared to the time 
between bunches. 
 
The potential well of the averaged beam is logarithmic at distances that are large 
compared to the beam size.  We must therefore consider the equation of motion 
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where y  is the transverse displacement of an electron with respect to the beam orbit.  

With the initial conditions ( ) ay =0 , ( ) 00 =y& , this has the solution: 
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It is then easy to solve for ( ) 02 =ωπy , where ω  is the frequency of oscillation.  We 
find: 
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Note that the frequency of oscillation is inversely proportional to the amplitude.  This 
means that coherent oscillations of electrons in the cloud will rapidly decohere, because 
of the frequency spread. 
 
We assume that the wake field resulting from oscillations of the electron cloud can be 
modeled as a broad-band resonator, with critical frequency given by (10).  From (9), we 
clearly have beb scrNk 22 2= , where bs  is the bunch separation.  To find an appropriate 

value for the oscillation amplitude, we consider those electrons at distance minr  from the 
beam, that receive sufficient energy from one bunch passage to kick them to the wall: 



   

 
 

22

b

srN
r beb2

min =   

where b  is the vacuum chamber radius.  We simply take minra = , to write23: 
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Decoherence of the oscillations leads to a damping of the wake field characterized by a 
quality factor 5≈Q .  A bunch with some transverse displacement initiates coherent 
oscillations of particles in the cloud.  This suggests an amplitude for the wake field: 
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and the wake field is then given by: 
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For M evenly spaced bunches the frequencies µΩ  of the different modes are given by20: 
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The imaginary part of µΩ  gives the growth rate, and the real part gives the coherent tune 

shift associated with a particular mode.  For the MDR case, we consider a ring filled with 
714 bunches; i.e. we neglect the 65 ns gap between bunch trains.  This is likely to give a 
pessimistic value for the growth rates, which are shown in Figure 16.  Note that we have 
assumed a cloud density again given by the neutralization condition.  The tune shifts are 
shown in Figure 17.  The shortest growth time of any mode is 20 µs.  There is 
considerable uncertainty in this figure, so although it is possible that it may be within the 
range of a feedback system, it is also possible that the growth rates could be much larger, 
and difficult to damp. 

9 Fast Beam-Ion Instability 
Ions generated by interaction between an electron beam and residual gas molecules in the 
vacuum chamber can be trapped in the beam, and give rise to instabilities.  In certain 
parameter regimes, a fast instability can be manifest, which is not controlled by gaps in 
the bunch train for the purpose of clearing the ions.  Such an instability has been analyzed 
by Raubenheimer and Zimmermann24, and has been observed in a number of machines25. 
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Figure 16 

Growth rates of the coupled bunch modes driven by the electron cloud. 
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Figure 17 

Tune shift of the coupled bunch modes driven by the electron cloud. 

 
In the limit for large times t , the vertical action of the final bunch in a train grows as26: 
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p  is the residual gas pressure, bn  the number of bunches in the train, pr  the classical 

radius of the proton, and A  is the atomic mass number of the residual gas molecules 
leading to the instability.  We have assumed an ionization cross-section of 2 Mb.  If the 
oscillations grow from Schottky noise, then the initial vertical action may be estimated 
as: 
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The growth times predicted from this theory for the NLC are shown as a function of 
pressure in Figure 18; we have assumed the residual gas is CO, for which A = 28.  At a 
pressure of 1 nTorr, the growth time is 160 ns, which is certainly too fast for a feedback 
system to damp.  We note that if the initial betatron amplitude is given by equation (12), 
then about 300 rise times are required before the oscillation amplitudes become 
comparable to the beam size. 
 
The collected ions also lead to an incoherent tune shift, which may again be estimated 
from (8) and the first of equations (7), where now we use the ion line density: 

[ ] [ ] bbc nNp Torr5m 1 ≈−λ   

We assume a bunching factor of 1, since the ions are slow to respond to the forces from 
the beam.  For the MDR, we find an incoherent tune shift of 0.005 for a residual pressure 
of 1 nTorr. 
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Figure 18 

Fast beam-ion instability growth time as a function of pressure. 

 
Although the incoherent tune shift appears not too large, the growth time from the fast 
beam-ion instability needs to be addressed, and further studies should include detailed 
tracking simulations.  Possible remedies are discussed in Reference 24. 

10 Conclusions 

• If the low impedance suggested by the current modeling can be achieved, bunch 
lengthening should be small; the machine should operate some way below the 
threshold for microwave instability. 

• The growth of coupled bunch modes from resistive wall impedance and higher 
order modes in the cavities, can be controlled by a feedback system. 
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• The short Touschek lifetime could make commissioning and tuning the machine 
difficult.  It would be desirable to improve the dynamic acceptance of the ring, 
and to have an RF system specified for more than the current 1.5% momentum 
acceptance.  An increase in bunch length, and a method of coupling the transverse 
emittances in a controlled manner would also be of benefit. 

• Intra-beam scattering is likely to pose a significant restriction on the performance 
of the damping ring with the current design.  There are various ways to minimize 
the effects of IBS, but also considerable uncertainty in the theory.  We propose 
that experimental studies with the aim of testing the theory be continued, and that 
different methods for overcoming the limits imposed be carefully considered. 

• The phase transients from beam loading in the main RF cavities are unlikely to 
pose any significant problems.  There is a different situation regarding higher 
harmonic cavities, which might otherwise be used for reducing IBS effects by 
lengthening the bunch.  It seems unlikely at present that higher harmonic cavities 
could be used as a solution to IBS. 

• The space-charge tune shift is approaching the regime where it could limit the 
dynamical stability of the beam.  Further work is needed, including detailed 
simulations (and possibly, experimental studies), before it can be stated with 
confidence that space-charge effects will not be a problem. 

• Theoretical studies of single bunch and coupled bunch instabilities from electron 
cloud are continuing.  Much has been learned from observations at existing 
machines, and progress is being made in both analytical studies and in 
simulations.  It appears highly likely that electron cloud instabilities will limit the 
performance of the positron damping ring, if preventive measures are not taken.  
It is important to continue experimental and theoretical work, in the direction of 
predicting the thresholds and growth rates with confidence, in a variety of 
situations (effects of magnetic fields, vacuum chamber coatings etc.)  A large 
amount of data already collected needs to be fully understood. 

• The precise effects on the damping ring performance of the fast beam-ion 
instability are uncertain.  It is likely that a pressure below 1 nTorr will be needed, 
at least in some parts of the machine, if adverse effects are to be avoided.  Further 
work is needed, and should include simulations and experimental studies. 

• We have not so far considered the effects of transients from the injection process.  
Injected beams with large offsets could have a detrimental effect on stored beams.  
This is a further important area where more work is needed.  
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